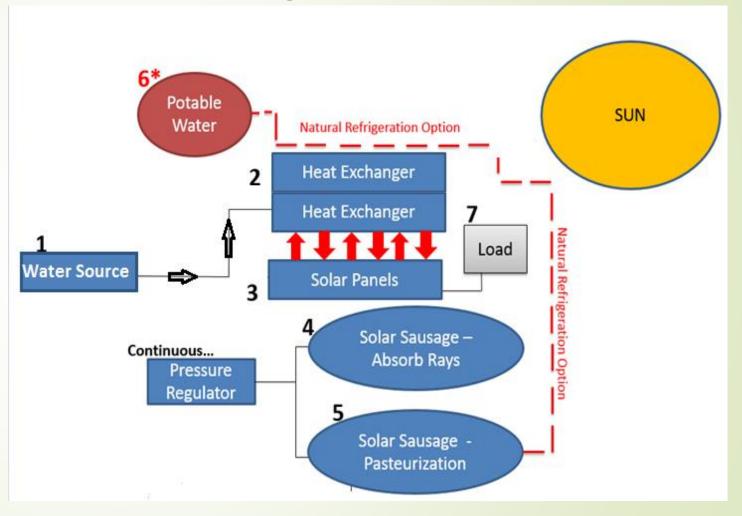
Solar Sausage Team 'B'- E#2/M#26 Final Presentation

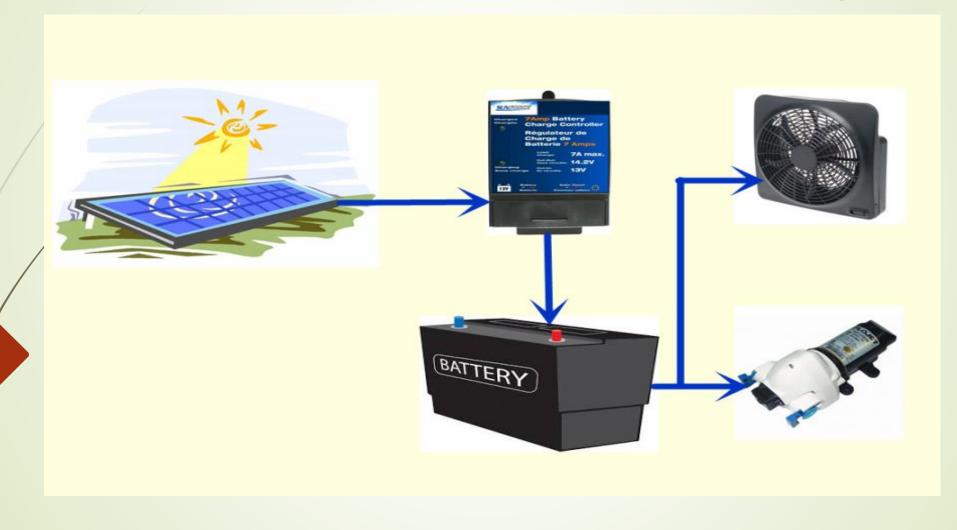
By: Jimmy Smith, Jr., Aileen Ulm, Xiaoxiang Gao, Jonathan Melton, James Harrell, Madanha Chibudu, and Morgan Bublitz

Senior Design Instructor: Dr. Michael Frank

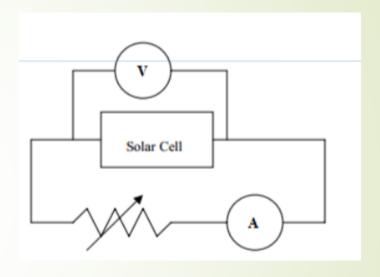
Technical Advisors: Dr. Edrington & Dr. Ordonez



Speaker: Jimmy Smith, Jr.

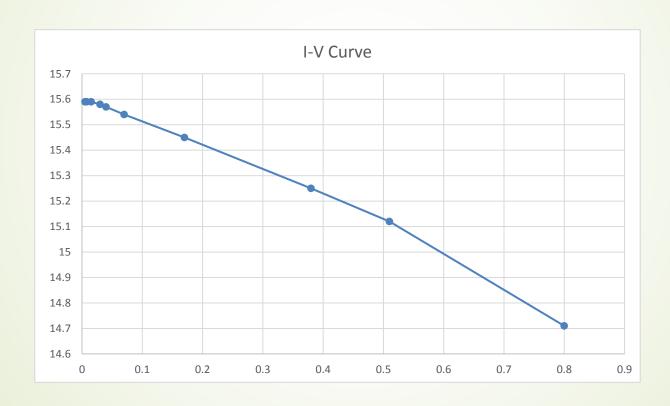

Overview: Solar Sausage

- Problem.
 - Current model: inefficient
 - Solar panel cooling system
 - Impoverished countries
- Intended use/users
 - Provide electricity
 - Potable water
- Operating Environment
 - Dry climates
 - Location: Panama


Speaker: Jimmy Smith, Jr.

Overview of Solar Power System

Solar Power Test



Test Equipment:
 Solar cell, Protractor, Light source,
 Power source, Ammeter, Voltmeter

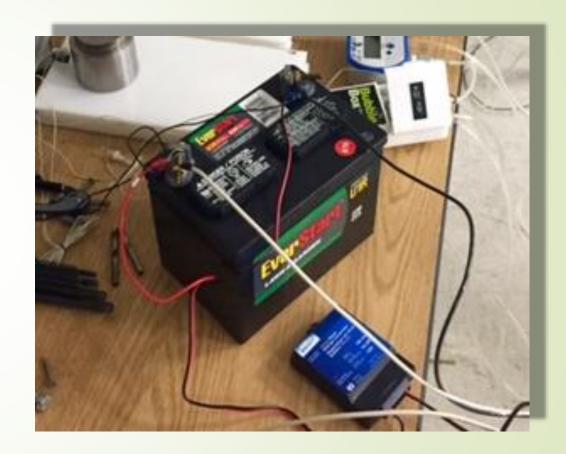
Solar Power Test

Actual Results:

6

Charge Regulator

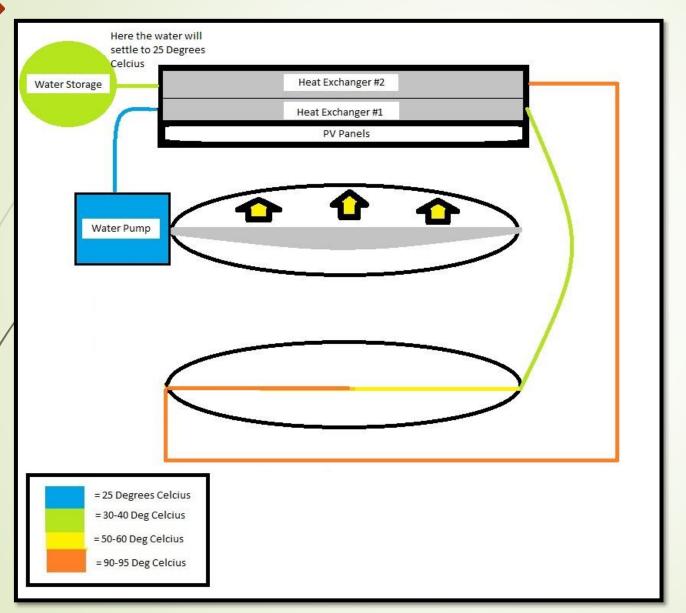
Sunforce 7A Battery Charge Regulator


- Used for the 12VDC battery
- Protect the battery from overcharge
- Protect the battery from over discharging
- •According to the battery voltage grade, the controller can automatically set charge-off voltage, the load-off voltage, the load- restore voltage.

7

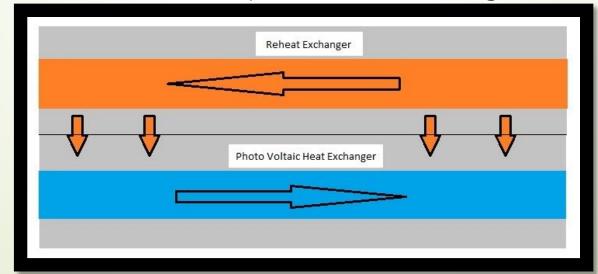
Energy Storage Device

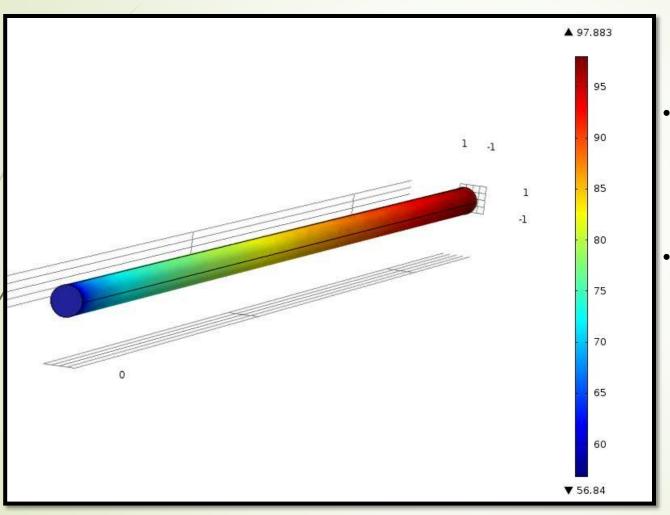
- Everstart U1R-7 12V Lawn&Garden Battery
- Supports our 35 W load
 - ► 4.1 W drawn from fan
 - 25W drawn from water pump
 - 6W drawn from solar panel
- Solar Panel Data
 - 16V @ 2.5A = 40W
 - Positive Net Energy of 5W


Load Experimental Values

- Voltage
 - **■** 12 V
- Current
 - 280 mA (on low)
 - 340 mA (on high)
- Power Absorbed
 - 3.36 W (on low)
 - 4.08 W (on high)

Pasteurization Process


10


- Counter Flow Design Heat exchanger
- One Sausage for energy production
- One sausage for pasteurization

Pasteurization Process

- The counter-flow heat exchanger design will be safer for the consumer.
- Increases the efficiency by using a reheat cycle similar to those found in steam power plants.
- Relatively easy to accomplish Stacking an identical heat exchanger on top of the photovoltaic heat exchanger.
- Increased flow rate More water could be pasteurized over time.
- Decrease the size of the pasteurization sausage

Pasteurization -COMSOL Analysis

- One Pasteurization sausage will increase temperature from 55°C to about 97°C
- This concludes that one pasteurization sausage will be adequate

Heat Exchanger Test Plan

- Testing environment was the Energy and Sustainability Center (ESC)
- Collect data using the Solar Simulator
- Run water through for 10-15 min
- Measure Inlet and Outlet Temperatures
- Measure Flow Rate
 - Adjust flow until desired temp occurs

Speaker: Morgan Bublitz

Heat Exchanger Results

- Preheated the water from 25 to 45 Deg C
- Cools water from 100 to 50 Deg C
- Ran water through the system for 20 min
- Measured flow rate was approximately 0.08 gal/min

Speaker: Morgan Bublitz

Heat Exchanger Stand

- Aluminum Frame
- Angle of the solar sausage can be adjusted by moving the height of the stand.
- Heat exchanger attached behind the PV panel

Heat Exchanger Stand Results

16

- Aluminum 8020 Frame
- The height of the stand is 6 feet
 - Width is 12 feet
- Heat exchanger is attached to the top side of the stand at a 20 degrees.
- PV panel is attached in front of the heat exchanger
- During testing, a failure of the adhesive on the ends of the heat exchanger failed
 - A different method of closing the ends would be necessary

Speaker: Brian Chibudu

Pressure Regulator Test Plan

- Test date was February 27th at 2:00pm
- Location: Keen Lab
- Objective is to verify the performance of the pressure regulator
- Sausage will then be cooled until below min pressure occurs
 - Sausage should inflate to desire pressure

Speakers: Brian Chibudu

Pressure Regulator Plan

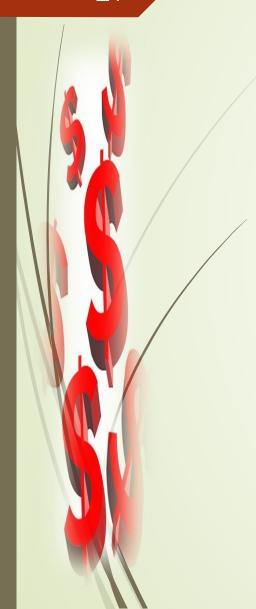
Performance Results:

- The upper half of the solar sausage will have pressure of 0.25 psi.
- > The lower half will have a pressure of 0.245 psi.
- A differential pressure of 0.005 psi should be maintained at all times.

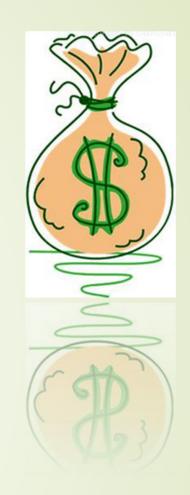
Speaker: Brian Chibudu

Pasteurization Sausage Failure

Results:


- After 10 minutes excessive heat caused adhesive failure.
- Surface temperature was over 50 deg C
- > Future prevention could include
 - > relief valves
 - Higher temperature adhesive
 - Solenoid valves to regulate high pressure

Speaker: Morgan Bublitz


Future Work

- Buy or build custom PV panels
- Modify heat exchanger
 - Weld manifold caps
 - Better interface
- Modify pressure regulator to be more precise
 - Use micro-switches with better tolerance
 - Possibly include microcontroller and digital pressure gauges
- Implement automatic tracking system
- Implement smart flow system for optimal heating

Budget

Expenses			
Item	Quantity	Cost	Total
Water Pump	1	\$102.00	\$102.00
Aerator Pump	4	\$8.00	\$32.00
7A Charge Regulator	1	\$35.00	\$35.00
12V Battery	1	\$38.00	\$38.00
DC Fan	1	\$15.00	\$15.00
ME- Materials	1	\$982.00	\$982.00
ME- Materials	1	\$1,300.00	\$1,300.00
	Expense Total		\$2,504.00

Speaker: Aileen Ulm

Acknowledgements

- A special thank you to all who contributed, ideas and resources, to our project.
 - Ian Winger (Sponser)
 - Dr. Ordonez (Advisor)
 - Dr. Edrington (Advisor)
 - Dr. Frank
 - Dr. Devine
 - Dr. Gupta
- We've learned a lot throughout this project and would like to see it go on next year.

Speaker: Brian Chibudu