EEL 4911C Senior Design: Solar Sausage Project 'B'

By: Jimmy Smith, Jr., Aileen Ulm, Xiaoxiang Gao, Jonathan Melton, Morgan Bublitz, James Harrell, and Madanha Chibudu

The Design Team

- Jimmy Smith, Jr. Project Manager/Team Leader
 - Manages/coordinates the tasks of the group.
 - Measures performance
 - Delegates roles
 - Oversees all operations and manages the budget
 - Technical Area: Circuit design, power, C++ programming
- Aileen Ulm Lead Electrical Engineer/Secretary
 - In charge of all EE and CE designs.
 - Keeps in close contact with the lead ME.
 - Keeps all records.
 - Technical Area: Power, Energy

Speakers: Jimmy Smith, Jr. & Aileen Ulm

Continued....

- Morgan Bublitz Lead Mechanical Engineer
 - In charge of all mechanical designs
 - Keeps in close contact with the Lead ECE
 - Provides valid design specifications for the team to decide on
 - Keeps all design documents
 - Technical Area: Energy Research, Experimentation 32
- Jonathan Melton & Xiaoxiang Gao Electrical Test Engineers
 - Insures all components in a synchronized environment and do not violate engineering standards.
 - Test all prototypes
 - Technical Area: Power, Photo Voltaic, Energy

Speakers: Morgan Bublitz, Jonathan Melton, Xiaoxiang Gao

Continued....

- James Harrell & Madanha Chibudu Mechanical Test Engineers
 - Insures all design specifications are valid and do not violate engineering standards.
 - Test all structure prototypes
 - Technical Area: Pressure Systems, Water Pump Design/ Thermo Fluid Design

Code of Conduct

- Weekly meetings
- Team Dynamics
- Dress Code
- Conflict Resolution

Speaker: Jimmy Smith, Jr.

Needs Assessment

- Problem Statement
 - The team will address the inefficiencies present in the current Solar Sausage development, and design a complete and working system.
- Background Information
 - "Inflatable Solar Energy Collector"
 - Applications requiring heat generation can benefit from the Solar Sausage

Speaker: Aileen Ulm

Statement of Needs

- Structural System for the Solar Sausage
- Tracking Mechanism
- Balloon pressure controls
- Power Utilization System
- Photovoltaic (PV) Cooling system
- Water Supply and Purification system
- Waste Disposal System
- Low Cost overall design and maintenance

Statement of Wants

- Avoid water cooling system
- Use of 2 or 3 Sausages to catch sunlight
- Optimize all sunlight captured by the Sausages
- Independently supported tube for water purification

Speaker: Jonathan Melton

Operational Description

- Harness Solar Energy
 - Lost Rays
- Pressure Levels
 - MUST be accurate
 - Microcontroller
- Cool Water Pump
 - Cool PV Panels
 - Pasteurization Process
- Weather

Speakers: Aileen Ulm

Performance Requirements

- Water Pump
 - Negligible energy draw (if any)
 - Pump water from ground
 - ~100 psi required for 200 ft well
- Filtration System
 - Filters large particulates
 - Change filtering material with minimal resources
- PV Panel Heat Exchanger
 - Water cooled
 - Maintain low temp for PV panel
 - Preheat drinking water

Speakers: James Harrell

Performance Requirements

- Pasteurization
 - Temp at time
 - Ideal Diameter vs wall thickness
 - High Reynolds number
 - Material constraints
 - Temperature, pressure, etc.
- Pressure Gauge
 - Reliable and cost effective
 - Use existing pressure sensing ports
 - Regulatory inflation/deflation rate

Speakers: Morgan Bublitz

Constraints

- CONS1:Time This projected has to be completed by the end of spring 2015.
- CONS2: Money \$5000 budget was allocated for this project.
- CONS3: Size The prototype has to be approximately equal to 10ft.
- CONS4: Temperature Potable water has to be pasteurized with temperatures ranging from 65°C 90°C.
- CONS5: Pressure The top and bottom halves of the prototype have to maintain a pressure of 0.5psi and 0.492psi respectively.
- CONS6: Weather Solar sausages work best in dry climates.

Speaker: Madanha Chibudu

Interface Requirements

- Increase in temperature during the day would increase the internal pressure of the sausages and vice verse.
- "Index of Refraction"
- Trivial interface for the user... Sensors, filtration, and reflective film.
- Other systems: Valve, Cooling, and Waste System; Pump control, pasteurization, and pressure.

- Objective
 - The objective of testing is to ensure that each parts of design is working to its capability without endangering the environment and user
- Features to be tested
 - 1. Interface
 - 2. Pressure Sensor
 - 3. PV Cooling System
 - 4. Votlage and Current Output
 - 5. Water Purifying
 - 6. Sun Tracking

Speaker: Xiaoxiang Gao

- 1.Conversion Test
 - make sure convert DC to AC properly
 - The optimal power converted by PV panels is 900 W/m²

2.Interface Test

- ensure the sausage can work during the extreme weather condition
- no major meltdown happen while maintaining

Speaker: Xiaoxiang Gao

- 3. Water Purifying Test
 - make sure the water can pass the Red Cross Standards for consumable water after the pasteurization
 - 4. Pressure Sensor Test
 - using the pressure regulator to keep the balance between the top and bottom of the sausage

Speakers: Xiaoxiang Gao

5.Performance Test

ensure all pieces of sausage are working in harmony

6.Sun Tracking Test

 guarantee the PV panels can track sunlight precisely so that it will be in good utilization all the time

Speaker: Xiaoxiang Gao

7.PV Cooling Test

• make sure that solar panels are at an operable temperature

Speaker: Xiaoxiang Gao

Comparison Matrix

	Low Cost	High Energy	High Efficiency	Clean Water	Low Maintainence	High Safety	Small Size	Geo Mean	Norm Weight
Low Cost	1/1	1/1	3/1	1/3	2/3	1/5	2/1	1.17	0.10
High Energy	1/1	1/1	1/3	1/2	1/2	1/5	1/1	0.65	0.06
High Efficiency	1/3	3/1	1/1	1/4	1/2	1/5	1/3	0.80	0.07
Clean Water	3/1	2/1	4/1	1/1	4/1	1/1	4/1	2.71	0.24
Low Maintainence	3/2	2/1	2/1	1/4	1/1	1/5	1/2	1.06	0.09
High Safety	5/1	5/1	5/1	1/1	5/1	1/1	5/1	3.86	0.34
Small Size	1/2	1/1	3/1	1/4	2/1	1/5	1/1	1.14	0.10

Rank	Needs	Weight
#1	High Safety	0.34
#2	Clean Water	0.24
#3	Low Cost	0.10
#4	Small Size	0.10
#5	Low Maintainence	0.09
#6	High Efficiency	0.07
#7	High Energy	0.06

Speaker: Jimmy Smith, Jr.

Fall 2014 Semester Gantt Chart

	Sept. 2014	Oct. 2014	Nov. 2014	Dec. 2014
Milestone 1				
Milestone 2				
Milestone 3				
Self/Peer Eval				
Team Minutes				
Research/ Planning				

Speakers: Aileen Ulm

Overall...

- Many constraints
- Interface will be very strenuous
- Tested in stages
- Customer needs' and wants pose valuable insight