Project Proposal and Statement of Work

Team Members: Jimmy Smith, Jr., Aileen Ulm, Xiaoxiang Gao Jonathan Melton, Morgan Bublitz, James Harrell, and Madanha Chibudu

Senior Design Project Instructor: Dr. Michael Frank

Technical Advisors: Dr. Edrington & Dr. Ordonez

Problem Statement

pressure regulator

. Energy Storage

batteries

. Cooling System for solar panels

heat exchanger

Aileen Ulm

Intended Use(s) & User(s)

 Provides electricity and potable water to impoverished countries.

Support a 1.5 kW load; scaled up version will support a

small village

Assumptions & Limitations

Assumptions	Limitations
Components for the project will be inexpensive	\$5,000 budget
Provide potable water	Scarce water sources
Project will be completed in two semesters	Unforeseen circumstances
Solar Sausage and Photovoltaic panel will both have a length of 10 feet.	Storing the Solar Sausage
Power output of 900 W/m²	Ideal Sunlight
Water will be pasteurized from 65°C – 90°C.	Continuous water flow
Upper & Lower hemispheres will maintain a constant pressure	Morning dew
One axial rotation	Few moving parts to track the sun
Reflective material is convenient	The tension on both ends of the sausage

Risk Assessment

- Lack of understanding of client requirements or wants
- Scheduling issues may cause the whole project to fail to meet the deadline
- Designs may not hold up to certain specs given to the team by the client
- The temperature may not be controlled at a level to keep all of the equipment safely cool
- Undecided design routes for the overall project design
- Pressure stability could not be reached

Top level Design

Operating Environment

- Hot & dry climates
- Basing our specifications to the environment of the country in Panama.

Jimmy Smith, Jr.

Power Conversion (Inverter)

Power Conversion (step-up transformer)

Water Purification

- Pumped from well
- Pasteurized
- Timing / Temperature
- Sensor

Solar Tracking System

- Importance
 - Increases system output
 - About 30 percent more production
 - Less panels, less expensive

- Tracking Mechanism
 - Single axis adjustability
 - Monthly Locking Positions
 - Dual axis is not good for plumbing

Solar Tracking Angles

January	February	March	April	May	June
65°	73°	81°	89°	97°	104°
July	August	September	October	November	December
97°	89°	81°	73°	65°	58°

Solar Panel

Principle of Solar Cell Operation :

Solar Panel

- Principle of Solar Cell Operation :
- Every solar panel has their own I-V curve, find the max power point and fully make use of it.
- Many things can influence the I-V curve, Such as insolation, temperature, shaded

Solar Panel

Helios 9T6 400W

Rated Power: 400W

MPP Voltage: 48.43V

MPP Current: 8.26A

Open Circuit Voltage: 59.8V

Short Circuit Current: 8.82A

Cells: 96 monocrystalline, 3 bus bars

Cells Dimensions: 156mm*156mm

Frame: Anodized aluminum

Cable: 2*1.2m solar cables with MC4 connectors

Module Temperature: -40 to 80

Test of Solar Panel

- Test Equipment:
- Solar cell
- Protractor
- Light source
- Power source
- Ammeter
- Voltmeter
- Potentiometer

- Set the circuit as in the diagram above (Ammeter is in series, Voltmeter parallel)
- Measure the Short Circuit Current (by having maximum resistance) and Open Circuit Voltage (by disconnect ting the variable resistor)

Storage Devices (Batteries)

- Advantages:
- Back up for night and cloudy days
- disadvantages:
- Energy loss during the process
- Adds to the expense of system
- Finite lifetime : 5~ 10 years
- Added floor space, maintenance, safety concerns

PV Panel Heat Exchanger Concepts

- Looped flow design
- 10ft long by 6in wide by 3in thick
- Body would be made from thermally conductive material
- Tubing would be made from a malleable, thermally conductive material
- Number of loops can be determined using a thermal analysis program

PV Panel Heat Exchanger Concepts

- Assembly 1 would require inserting copper tubing by machine
- Assembly 2 would come in three components
- Assembly 2 would require a weld for the upper and bottom half of the body

PV Panel Heat Exchanger Concepts

- Would make the water hotter than a parallel tube design
- Pasteurization process will take less time
- PV panel means they will stay at a lower temperature without wasting water
- Less water will be required to operate this heat exchanger
- Lower energy consumption

Heat Exchanger Idea

- Three Channel Flow
- Cools Photovoltaic Panels
- Preheats Pasteurization Water
- Aluminum Body
 - 3" X 6" X 120"
 - One inch diameter holes
 - Attached directly to back surface of PV Panel

Heat Exchanger Idea

- Flow Design*
 - Working Fluid
 - Water
 - Flow rate at one gallon per minute
 - Raises water 40 degrees
 Fahrenheit
 - 68 -> **1**08

Pressure Regulator

- Use existing Pressure Regulator
 - For now
- Developing strategies for improved Regulator
 - Mechanical
 - Electronic

Pump Options

Red Lion 24 GPM Shallow Well Jet Pump:

- Specifications:
 - Voltage 120 V/240 V
 - Flow rate 24 GPM
 - Suction head 25 ft.
 - Weight 42.5 lbs.
 - Power 1 HP
- Advantages:
 - Affordable
 - High suction head
 - Easy to install
- Disadvantages:
 - Cast iron has a high potential for rusting
 - High flow rate

Pump Options

Bum Cam Jet Pump

- Specifications:
 - Suction head 25 ft.
 - Flow rate 13.6 GPM
 - Total head lift 65 ft.
 - Voltage 120 V/240 V.
 - Weight 38 lbs.
 - Power 1 HP
- Advantages:
 - Affordable.
 - No water to air contact eliminating rust.
 - No waterlogging.
- Disadvantages:
 - High flow rate.

Pump Selection

Objective:

- Pump the water from its source to the heat exchanger and the second solar sausage in the most efficient way.
- Determine the performance characteristics of the pump.
 - Water flow rate.
 - Efficiency of the Pump.

Approach:

- Find the mass flow rate and record the results .
- Find the suction head (TDH) and record the results.
- Find the discharge pressure of the pump and record the results.
- Use pump performances curves or efficiency equation to find the efficiency of the pump.

Pump Selection

Test Plan:

- Measure and record the water flow rate.
- Observe how the water is discharged once it reaches the heat exchanger.
- Measure and record the pump discharge pressure.
 - Use a pressure gauge.
- Determine the overall efficiency of the pump.

Outcome:

- Selection of the most efficient pump.
- Achieve the desirable mass flow.
- Cost of running the pump under the conditions of the test.

Schedule (Gantt)

Mode ▼	Task Name ▼	Duration 🔻	Start ▼	Finish 🔻
*	Milestone #1	7 days	Wed 9/10/14	Thu 9/18/14
*	Milestone #2	13 days	Wed 10/1/14	Fri 10/17/14
*	Milestone #3	11 days	Thu 10/30/14	Thu 11/13/14
*	Build First Sausage	4 days	Tue 9/9/14	Fri 9/12/14
*	Research and Design for System	148 days	Wed 10/1/14	Fri 4/24/15
*	■ Heat Exchange Testing	63 days	Mon 11/17/14	Wed 2/11/15
*?	Design model			
*?	Calc. temp. to cool PV panels			
*?	Testing: Make sure system cools effectively			
*	■ Power Analysis	36 days	Wed 11/26/14	Wed 1/14/15
*	Total output measurement	5 days	Wed 11/26/14	Tue 12/2/14
*	Energy Storage	11 days	Tue 12/2/14	Tue 12/16/14
*	Design DC-AC conversion	20 days	Thu 12/18/14	Wed 1/14/15

Schedule

*	■ Pressure Regulator Implementation	40 days	Fri 11/28/14	Thu 1/22/15
*	Calculate psi for each chamber	3 days	Fri 11/28/14	Tue 12/2/14
*	Design a device to read pressure	32 days	Tue 12/2/14	Wed 1/14/15
*	Test system at calculated pressures	5 days	Wed 1/14/15	Tue 1/20/15
*		27 days	Mon 3/16/15	Tue 4/21/15
*?	Design process for pasteurization			
*?	Test temperatures the process takes place			
X?	Determine duration of pasteurization			
*	■ Sun Tracking System	51 days	Wed 1/7/15	Wed 3/18/15
*	Determine placement of system	4 days	Wed 1/7/15	Mon 1/12/15
*	Track sun's movement in region	5 days	Mon 1/12/15	Fri 1/16/15
*	Create design that will follow sun patterns	34 days	Fri 1/16/15	Wed 3/4/15
*	Test movement of tracking system	11 days	Wed 3/4/15	Wed 3/18/15
*	△ Water Pump	18 days	Tue 3/10/15	Thu 4/2/15
*	Decide on location of water (well, surface, etc.)	2 days	Tue 3/10/15	Wed 3/11/15
*	Design pump to effectively bring water to system	16 days	Thu 3/12/15	Thu 4/2/15

Budget

A. Personnel	A. Personnel				
Engineer	\$/hour	hr/w eek	#w eeks	Total Pay	
Jimmy Smith	30	12	32	\$11,520.00	
Aileen Ulm	30	12	32	\$11,520.00	
Xiaoxiang Gao	30	12	32	\$11,520.00	
Jonathan Melton	30	12	32	\$11,520.00	
Morgan Bublitz	30	12	32	\$11,520.00	
James Harrell	30	12	32	\$11,520.00	
Madanha Chibudu	30	12	32	\$11,520.00	
			Subtotal	\$80,640.00	
B. Fringe Benefits			29%	\$23,385.60	
C. Total Personnel				\$104,025.60	
D. Expense					
	Quantity	Cost		Total	
Inverter	1	\$160.00		\$160.00	
Charge Regulator	1	\$80.00		\$80.00	
Fuse	2	\$2.50		\$5.00	
Batteries	1	\$200.00		\$200.00	
Water Pump	1	\$300.00		\$300.00	
Jet pump	1	\$220.00		\$220.00	
Pressure Gauge	1	\$150.00		\$150.00	
			Expense Total	\$1,115.00	
			Total Direct Costs	\$105,140.60	
	Overhead Costs		45% of Total Direct	\$47,313.27	
1			Total OCO	\$152,453.87	